Эквивалентная нагревательная поверхность прибора

При разработке новой конструкции отопительного прибора и при изготовлении прибора на заводе всегда проявлялось стремление, с одной стороны, всемерно повысить коэффициент теплопередачи, с другой - увеличить площадь внешней поверхности каждого элемента как измерителя, определяющего объем выпускаемой продукции (даже в ущерб величине коэффициента теплопередачи).

Эквивалентная нагревательная поверхность прибора

С целью получения единого теплотехнического и производственного показателя в нашей стране в 1957 г. было введено измерение теплоотдающей поверхности всех отопительных приборов в условных единицах площади. За условную единицу площади был принят квадратный метр эквивалентной нагревательной поверхности (м2 энп) или, короче, эквивалентный квадратный метр (экм). Такое измерение площади нагревательной поверхности стимулирует выпуск совершенных в теплотехническом отношении приборов.

Эквивалентным квадратным метром называется такая площадь теплоотдающей поверхности стандартно установленного отопительного прибора, через которую при средней температуре теплоносителя в приборе 82,5°С в воздух с температурой 18°С передается тепловой поток, равный 506 Вт (435 ккал/ч). За стандартную принимается открытая установка прибора у наружной стены с односторонним присоединением к трубам.

При расчетной разности температуры воды 95-70°C и температурном напоре, равном ((95+70)/2)-18=82,5-18=64,5°С, для передачи в помещение 506 Вт или 506*3,6 кДж/ч (435 ккал/ч) необходимо в расчете на 1 м2 энп пропустить через отопительный прибор воды в количестве

G=(506*3,6)/((4,187*(95-70))=17,4 кг/(ч м2 энп);

G=435/(1*(95-70)) =17,4 кг/(ч м2 энп).

Это, в частности, испытательный расход воды для 1 м2 энп секционного радиатора, на который делалась ссылка в пояснении к формуле:

kпр.в=m*Δtnср*Gp;

где G - относительный расход воды в отопительном приборе (отношение действительного расхода воды к испытательному, принятому при экспериментальных исследованиях);

p - показатель степени по экспериментальным данным.

Выпускавшийся в 1957 г. секционный радиатор типа H-136 (его строительная глубина 136 мм, монтажная высота 500 мм) был принят за эталон. Через один квадратный метр внешней физической поверхности эталонного радиатора Н-136 (площадь поверхности четырех секций) при испытании в стандартных условиях (испытывался радиатор, состоящий из восьми секций) передавался в помещение тепловой поток, равный как раз 506 Вт (435 ккал/ч). Следовательно, восемь секций радиатора Н-136 имели площадь теплоотдающей поверхности, равную 2 м2 или 2 м2 энп (экм).

Исчисление площади внешней поверхности любого отопительного прибора в условных единицах и определение для одного и того же элемента прибора (секции, ребристой трубы, конвектора, панели) отношения площади эквивалентной нагревательной поверхности fэ к площади ею физической внешней поверхности fф есть сравнение конкретного прибора с эталонным.

Для каждого отопительного прибора площадь внешней поверхности в м2 энп (экм) является таким же характерным показателем, как и площадь поверхности в м2. Любой отопительный прибор будет совершеннее в теплотехническом отношении эталонного радиатора, если его эквивалентная площадь Fэ в экм будет больше площади внешней физической поверхности Fф в м2. Например, если прибор имеет Fэ=6 экм и Fф=5 м2, то его 1 экм=5/6 м2 и тепловой поток в 506 Вт (435 ккал/ч) передается прибором в стандартных условиях с 5/6 м2 его внешней поверхности или его 1м2=6/5 экм и теплопередача с 1 м2 поверхности составляет 50б*(6/5)=607Вт/м2 [522ккал/(ч м2)].

Сопоставление площади поверхности одного элемента отопительного прибора в м2 энп (экм) с площадью его поверхности в м2 дает возможность судить о совершенстве прибора в теплотехническом отношении.

Сказанное можно также пояснить схемами, изображенными на рисунке. На рисунке представлены два отопительных прибора равных размеров, состоящие из трех элементов с физической поверхностью по 1 м2. Прибор на рисунке имеет эквивалентную площадь нагревательной поверхности в экм Fэ>3, что свидетельствует о высоком коэффициенте теплопередачи. Поэтому часть длины этого прибора, соответствующая площади поверхности в 1 экм (на чертеже заштрихована), меньше длины одного элемента –l1<l. Прибор на рисунке имеет площадь эквивалентной нагревательной поверхности в экм Fэ<3 и, следовательно, обладает низким коэффициентом теплопередачи. Поэтому часть его длины, соответствующая 1 экм, больше длины одного элемента, т. е. l2>l.

image026

Схематическое изображение площади эквивалентной нагревательной поверхности в 1 экм (заштрихована) двух отопительных приборов в сравнении с их физической площадью поверхности в 1 м2, соответствующей длине l.
а и б - соответственно для приборов с высоким и низким коэффициентом теплопередачи.

Следует сделать вывод: чем совершеннее в теплотехническом отношении отопительный прибор, тем меньше площадь его физической поверхности, передающая тепловой поток, равный 506 Вт (435 ккал/ч). Можно, например, измерить выпущенные заводом 1000 м2 стальных панелей примерно 1400 экм и 1000 м2 ребристых труб - только 690 экм.

Измерение поверхности отопительных приборов в м2 энп не изменяет формы уравнений; изменяются лишь численные коэффициенты а, b и m (при сохранении значений n и p).

Уравнение для водяных отопительных приборов примет вид:

kэ.в=m’*Δtnср*Gp.

Для паровых отопительных приборов уравнение принимает вид:

kэ.в=m’*Δtn.

где kэ — коэффициент теплопередачи, отнесенный к 1 м2 эквивалентной нагревательной поверхности прибора;

m’ - экспериментальный численный коэффициент.

На основании уравнений можно написать формулы для определения плотности теплового потока, передаваемого через 1 м2 эквивалентной нагревательной поверхности (через 1 экм) любого отопительного прибора.

При теплоносителе воде:

qэ.в=kэ*Δtср=(m’*Δtnср*Gp)* Δtср=m’* Δtn+1ср* Gp;

при теплоносителе паре:

qэ.в= m’* Δtn+1;

где qэ - поверхностная плотность теплового потока, Вт/м2 энп [ккал/(ч м2 энп)].

В этих формулах и в приведенных выше уравнениях температурный напор вычисляется по выражению как Δt=tт-tв в зависимости от средней температуры теплоносителя в отопительных приборах.

В системах водяного отопления, как уже указывалось, за температуру теплоносителя tт принимается

tт=tср=(tвх+tвых)/2,

т. е. полусумма температуры воды, входящей tвх и выходящей tвых из прибора.

Применительно к однотрубным системам водяного отопления с последовательно соединенными отопительными приборами выражение, если тепловая мощность прибора Qпр, Вт, принимает вид:

tт=tср=tвх-(Δtпр/2)= tвх-((3,6*Qпр)/(2*с*Gпр)),

обозначая tвх-tвых= Δtпр=(3,6*Qпр)/(с*Gпр).

Уравнение более удобно для пользования, так как при расчете площади нагревательной поверхности приборов в однотрубных стояках известна температура воды, входящей в прибор, а температура выходящей воды зависит от расхода Gпр, не всегда заранее известного.

В двухтрубных системах водяного отопления с параллельно соединенными отопительными приборами температура воды, входящей и выходящей из прибора, в большинстве случаев принимается без учета ее понижения вследствие охлаждения в магистралях. Тогда за температуру воды, входящей в каждый прибор, может быть принята общая температура горячей воды в системе tr; за температуру воды, выходящей из каждого прибора, - общая температура охлажденной воды в системе t0, и выражение перепишется в виде:

tт=tср=(tвх+tвых)/2=(tг+tо)/2.

где tг - расчетная (соответствующая температуре наружного воздуха, расчетной для отопления в данной местности) температура горячей воды, поступающей в систему отопления;

tо - расчетная температура охлажденной (обратной, как ее часто называют) воды, уходящей из системы.

В системах парового отопления, как уже отмечалось, за температуру теплоносителя принимается

tт=tнас.

где tнас - температура насыщенного пара, поступающего в отопительный прибор. Эта температура, как известно, зависит от давления пара и не изменяется при его конденсации.

Выражение для определения относительного расхода воды в отопительном приборе G в формулах имеет вид:

для колончатых радиаторов и колончатых стальных панелей при испытательном расходе воды Gисп=17,4 кг/(ч м2 энп).

G=Gпр/(17,4*Fр)

для остальных отопительных приборов

G=Gпр/ Gисп

где Fр - расчетная площадь нагревательной поверхности радиатора или колончатой панели, м2 энп.

Для определения относительного расхода воды в колончатых радиаторах и панелях необходимо знать площадь нагревательной поверхности (чтобы найти действительный расход воды, приходящийся на 1 м2 энл), которая в вычислениях является искомой величиной.

Поэтому выражение должно быть видоизменено, что будет сделано несколько ниже.

Каждая формула для определения плотности теплового потока, передаваемого через 1 м2 энп конкретного отопительного прибора при теплоносителе воде, отражает влияние на тепловой поток, поступающий в помещение, следующих факторов:

а) температурного напора Δtсp (как и при теплоносителе паре);

б) расхода воды Gпp;

в) дополнительной потери тепла через наружное ограждение в связи с размещением около него прибора (в формулу вводится значение knp, уменьшенное на 5% против действительного);

г) схемы движения воды в приборе, обусловленной способом его присоединения к трубам, т. е. местами подачи и отвода воды (в формуле изменяются числовые значения коэффициента m’ показателей степени n и p).

На рисунке представлены четыре схемы движения воды в колончатых радиаторах и панелях, которые кратко называются: 1 - сверху - вниз (односторонняя и разносторонняя); 2 - снизу - вниз; 3 - снизу - вверх (односторонняя); 4 - снизу вверх (разносторонняя).

Для примера в таблице приведена часть формул, по которым определяется плотность теплового потока через 1 м2 энп колончатых радиаторов и панелей при теплоносителе воде.

Формулы для определения поверхностной плотности теплового потока колончатых радиаторов и панелей при схеме движения воды сверху-вниз (односторонней и разносторонней)

носительный расход воды GПлотность теплового потока qэ
Вт/м2 энпккал/(ч м2 энп)
1-7

2,08*Δtср1,32*G0,03
(1,93*[(tвх-tв)-(Δtпр/2)]1,36)/Δtпр0,031

1,79*Δtср1,32*G0,03
(1,66*[(tвх-tв)-(Δtпр/2)]1,36)/Δtпр0,031

>72,2*Δср1,321,89*Δср1,32

В формуле даются: коэффициент m’=2,08 (1,79) и показатели степени: при температурном напоре 1+n= 1,32 и при относительном расходе р=0,03. Формула представлена в виде, приведенном к температуре воды tвx, входящей в прибор, и к перепаду температуры воды Δtпр в приборе. В таком виде формулой удобно пользоваться при расчете отопительных приборов однотрубных систем водяного отопления.

image027

Схемы подачи и отвода воды из колончатых радиаторов

1 - сверху - вниз (односторонняя и разносторонняя); 2 - снизу - вниз; S - снизу - вверх (односторонняя); 4 - снизу - вверх (разносторонняя).

Теплотехнические испытания чугунных радиаторов при относительном расходе воды G>7 не выявили дальнейшей зависимости коэффициента теплопередачи и плотности теплового потока от количества воды, протекающей через них. Поэтому при G>7 формула меняется формулой, в которой влияние расхода воды учитывается увеличением постоянного множителя m’ до 2,2 (1,89).

Формулы, приведенные в таблице, действительны в пределах изменения температурного напора от 30 до 140°.

Подобную же структуру имеют формулы для определения плотности теплового потока колончатых радиаторов и панелей при других схемах движения воды, а также остальных отопительных приборов.

Рассмотрим влияние схемы движения и расхода воды на плотность теплового потока отопительных приборов на примере колончатых радиаторов и панелей. Перепишем уравнение в виде:

qэ.в=q1α

где q1=m’*Δtср1+n - плотность теплового потока отопительного прибора при относительном расходе воды G=1;

α=Gp—поправочный коэффициент, зависящий от расхода воды в приборе.

Влияние схемы движения воды, обусловленной схемой присоединения колончатых радиаторов и панелей к трубам, установим при действительном расходе воды, равном 17,4 кг/(ч м2 энп), когда поправочный коэффициент α равен единице. Вычислим и запишем в таблице плотность теплового потока q1 при Δtср=0,5 (95+10)-18=64,5°.

Поверхностная плотность теплового потока q1 колончатого радиатора или колончатой панели при G=1 и Δtср=64,5°.

Схемы движения водыПлотность теплового потока qт
Вт/м2 энпккал/(ч-м2 энп)%
Сверху-вниз506435100
Снизу-вниз45539190
Снизу-вверх (односторонняя)39533978

Сопоставление полученных значений плотности теплового потока позволяет оценить тепловую эффективность различных схем подачи и отвода воды при ее относительном расходе, равном единице, для стандартно установленных колончатых радиаторов и панелей: наиболее эффективна схема движения воды сверху — вниз, теплопередача при схеме снизу — вниз сокращается на 10%, а при схеме снизу — вверх — на 22% по сравнению со схемой сверху — вниз.

Подобная же закономерность отмечается и для отопительных приборов с трубчатыми греющими элементами, однако она проявляется менее заметно. Так, например, исследованиями в МИСИ установлено, что теплопередача двухрядного гладкотрубного прибора, состоящего из труб d=76ХЗ мм, последовательно соединенных по воде, уменьшается при переходе от схемы движения воды сверху - вниз к схеме снизу - вверх на 9%. При этом увеличивается степень неравномерности теплопередачи каждой из труб.

image029

Зависимость поверхностной плотности теплового потока колончатых радиаторов и панелей qэ при Δtср=64,5° соотносительного расхода воды G для схем движения воды

1 - сверху - вниз, 2 - снизу - вниз; 3 - снизу - вверх

Выявленная зависимость теплопередачи отопительных приборов от схемы движения воды показывает, что для передачи в помещение равного теплового потока площадь нагревательной поверхности приборов в рассмотренных условиях должна отличаться: площадь получится наименьшей при движении воды в приборе сверху - вниз и наибольшей при подаче воды снизу с односторонним отводом ее вверху.

Уменьшение плотности теплового потока при подаче воды в прибор снизу объясняется усилением неравномерности температурного поля его внешней поверхности, связанной с понижением температуры во вторичных контурах циркуляции воды внутри прибора. При односторонней подаче снизу и отводе воды сверху создается наиболее неровное поверхностное температурное поле («отстает», как говорят, часть площади прибора, удаленная от места ввода горячей воды) и в результате значительно сокращается общий тепловой поток от теплоносителя через внешнюю поверхность прибора в помещение.

Влияние расхода воды на плотность теплового потока колончатых радиаторов и панелей проследим по графикам на рисунке, относящимся к первым трем рассмотренным выше схемам движения воды.

При увеличении относительного расхода воды от 1 до 7 плотность теплового потока qэ возрастает, но в различном темпе в зависимости от схемы движения воды в приборе.

При схеме сверху - вниз плотность теплового потока, постепенно возрастая, достигает значения qэ= 1,07 q1, т.е. при увеличении расхода воды более чем в 7 раз возрастает всего на 7%.

При схеме снизу — вниз можно отметить наиболее значительное возрастание qэ до величины 1,23 q1, превышающей предельное значение плотности теплового потока в схеме сверху - вниз. Это свидетельствует об экономической целесообразности применения колончатых радиаторов и панелей в горизонтальных однотрубных системах водяного отопления со значительным относительным расходом воды (G>5).

При схеме снизу - вверх также наблюдается заметное возрастание плотности теплового потока - в пределе до qэ= 1,18 q1, т. е. до величины, на 18% превышающей первоначальное значение при G=1. Однако и это предельное значение qэ для схемы снизу - вверх существенно ниже, чем при других схемах, что свидетельствует об экономической нецелесообразности использования колончатых радиаторов и панелей в вертикально однотрубных системах с «опрокинутым» и иногда с «П-образным» движением воды в стояках. Действительно, расчеты показывают, что площадь нагревательной поверхности радиаторов в однотрубных проточных стояках систем отопления зданий повышенной этажности (12-16 этажей) при схеме снизу - вверх увеличивается не менее чем на 12% по сравнению со схемой сверху - вниз. Введение в однотрубные стояки со схемой снизу — вверх замыкающих участков с постоянным протоком воды сокращает относительный расход воды в радиаторах и приводит к еще большему увеличению площади их нагревательной поверхности.

Численные множители к величине q1, приведенные выше, выражают максимальное значение поправочного коэффициента α для колончатых радиаторов и панелей в формуле:

для схемы сверху — внизαм = 1,07
для схемы снизу — внизαм = 1,23
для односторонней схемы снизу — вверхαм = 1,18

При относительном расходе воды в радиаторе или панели G<1 поправочный коэффициент α также меньше единицы, т. е. в общем виде 1>α>1.

Для других отопительных приборов плотность теплового потока также зависит от расхода воды в них: для водоемких приборов, подобных радиатору, эта зависимость проявляется в большей степени, для трубчатых приборов - в меньшей.


Похожие материалы:
Новые материалы:
Предыдущие материалы:

 

Вы можете добавить комментарий:


Поиск по сайту:
Чаще всего читают статьи:
Полезная информация:
Популярные статьи:
Нормы: